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ABSTRACT

This paper deals with an industrial problematicaoimanufacturing system called to satisfy a
random demand during a finite horizon with a giwemvice level. The manufacturing system
production rate is limited. To respond to this dewhathe manufacturing calls upon
subcontracting. In order to minimize the inventand the production cost, the manufacturing
system must operate with a variable production.ratee manufacturing system M1 is subject
to a random failure. We assume that, the deternomabf the machine M1 depends both on
time and production rate. The object of this stigdio determine an optimal production plan
taking into account the machine deterioration fallog its production rate. The
subcontractor manufacturing system M2 is out ofti@dnTo start with, under a given service
level with a subcontracting constraint, we estdblia production plan minimizing the
inventory and production cost. Thereafter, startiwgh the previous production plan, we
derive an optimal production plan taking into acobuhe degradation of the machine,
minimizing simultaneously: the production, the meey and the degradation cost. In a next
stage, we also propose another optimal productizm oy minimizing costs of production,
inventory and maintenance. In this new optimal picitbn plan, we introduce a preventive
maintenance plan, taking into account the productate variation. Two numerical examples
are presented to illustrate the two proposed apphoa

KEYWORDS
Integrated maintenance, variable production rategegadation, production plan,
subcontracting.

INTRODUCTION

The integrated maintenance has been the subjsetvefal studies in recent years. It has been
proven that the maintenance management is closgdgd to both, production structure and
demand nature. Buzacott. (6) among the first astldro treated the problem of maintenance
and production, he studied the role of buffer stonkincreasing the system productivity. In
the JIT context, Abdelnour et al. (1), and Charalet(7) proposed a simulation model to
evaluate the performance of a production line dpegan push system. Van Brachte (16)
proposed a preventive maintenance policy consigehia machine age and the stock capacity
between two machines.

Concerning subcontracting, it has grown in the stdal world in virtually all domains as
noted by Amesse et al. (2). This practice is nataghb justified by production costs. It is part
of cooperation logic and coordination based onrietdgical incentives, to satisfy customers
in terms of quantity and delay. The above wasa&ably Andersen. (3) and Bertrand et al. (5).
Recently, in the context of integrated maintenabeglagi. et al. (9) developed a maintenance
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strategy integrating a subcontracting constraiheyltreated a production system represented
by a machine producing a single product type tsfyah constant demand during time. The
machine calls upon the sub-contracting represehyed second machine to complete the
entire demand exceeding the maximum machine cgpa&mtlowing the results obtained by
Dellagi et al. (9), the authors Dellagi et al. (t@ntinued in the same context to address the
problem but with two subcontractors. They definegpadicy of switching between sub-
contractors. The optimization of this strategyaggential. It consists in determining first, the
optimal age of preventive maintenance, secondlgutaing the optimal switching date. For
their part, Cormier et al. (8) proposed an anaitimodel to optimize maintenance and
production with subcontracting constraint, by imggong a shortage stock level caused by
machine downtime for both contractor and subcotudratn the cited articles treating the sub-
contracting, demand is assumed known, constanighih an infinite horizon. Whereas in
our study, the demand is random on a finite timgzbo. To meet such a demand while
minimizing production and inventory costs, it iscassary to vary the production rate. In
reality, the failure rate increases with time awdoading to the use of the equipment. It is
obvious, when we produce more, we degrade morarhehine. Moreover, a change in
production rate can also be beneficial to reach ymtimh goals when unpredicted events
happen in the system that disturbs the originatipcton plan. Khouja and Mehrez. (13) were
the first to consider a variable production ratehi@ classical economic production quantity
(EPQ) model. In their work, they assumed that pebdjuality depends on the production
rate. In the literature, the consideration of tly@ipment failure according to the production
rate is rarely studied. Among these works, we déa ldu et al. (12) who discussed the
conditions of optimality of the hedging point pgli¢or production systems in which the
failure rate of machines depends on the productete. Others like Liberopoulos and
Caramanis. (14) studied the optimal flow controkwfgle-part-type production systems with
homogeneous Markovian machine failure rates depgnoia production rate. In all these
cited studies above, when treating the failure lgrobdependency on production rates, they
assumed that the law of failure is exponentialltribhuted.
The optimization of simultaneous maintenance prodngs a complex task given the various
uncertainties associated with the decision procEssse uncertainties are usually due to the
randomness of the demand, causing the incapacitgredicting the demand behaviour
throughout future periods. Silva and Cezarino. @églt with a chance-constrained stochastic
production-planning problem under the hypothesesingberfect inventory information
variables and by computing the expected valueettst.
More recently Hajej et al. (11) dealt with combina@duction and maintenance plans for a
manufacturing system satisfying a random demand avmite horizon. In their model, they
assumed that the failure rate depends on the tidetlee production rate. In our study, we
build on Hajej's et al (11) model. The given mamiaing system cannot ensure the total
demand over the horizon, it calls upon the subectitrg. The manufacturing system is
subject to random failures. The failure rate degamdthe time and the production rate which
is variable over the production horizon. The fapiproach is to establish a production plan
optimizing the production and inventory cost withgi@en service level. To solve this, we
formulated an inventory and production problem a®mstrained stochastic linear quadratic
problem generalizing the HMMS (Holt, Modigliani, Muand Simon) model. In the next
stage, the previous production plan is then usedetive the cost of degradation using a
proposed degradation unit cost. The optimal pradagblan is obtained by minimizing the
production, the inventory and the degradation cost.
This paper is organized as follows. The next sadiescribes the problem, the used notation and the
adopted production policy. In section 3, the matigral model is presented expressing the total
expected cost determining the production plan. Sdwion 4, present the production plan influence on
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the manufacturing system degradation. This influesi¢aken into account in the determination of the
optimal production plan to minimize the productitiie inventory and the degradation cost. The fifth
section is dedicated to the numerical example tavshe proposed approach efficiency. Finally, a
summary of the work together with indications abextensions currently under consideration is
provided in the last Section of the paper.

PROBLEM STATEMENT
General Problem Description

In this study, we deal with an industrial problemmaif manufacturing enterprise producing
one part-type through a single operation in ordesdtisfy a random demand over a finite

horizonH. This demand is characterized by a normal disiobuwith an average demant
and a standard deviatien The maximum production rate of this manufactuf€® is lower

than the average demamncind its unit production cost@prl. In order to satisfy this random
demand with a given inventory service level and to avoid shortage due to the
manufacturing system unavailability, the enterphss to build a stock. That’'s why, it calls
upon another production enterprise, called subaotdr. The unsatisfied demands are lost
and induce a demand lost cost. The process madhinef the manufacturing enterprise is
subject to a random failure. The probability dgngiinction of time to failure i§(t), while the
failure rate(t) is increasing in both time and production raig). In another step, we
integrate a preventive maintenance policy optingzémultaneously production, inventory
and maintenance costs.

The study of this problematic is achieved in twepst In the first, we establish a production
plan minimizing production and inventory cost undervice level constraint. Thereafter, we
analyze the influence of the production rate vargaon the degradation of the manufacturing
system during the production horizon. To evaludiss tinfluence, we propose a unit
degradation cost. In the second step, we impleragreventive maintenance policy. Using
the production plan established in the first step,propose a new optimal plan, minimizing
simultaneously production, inventory and mainteeac@sts.

The subcontractor’'s manufacturing system M2 maantea is out of control. The only
information about its maintenance is the availgbiate32 The availability rate is defined by
the satisfied demand number divided by the totahlber demand in a constant period. The
machine M2 is characterized too by its maximal paidn rateU,™* and its unit production
costCpr2 The industrial problem is illustrated in the figuL.

i ! Random
¥ demand
: g Stoc

Manufacture M1

Subcontractor M2

Production plan allocation

Fig. 1: Industrial problem
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Notation

H : finite production horizon

At: period length of production

S inventory level at the end of the perio¢k=1,....... HiAt)
Uik: production level at perioklof machine Mi, i1{1,2}

dk : demand quantity at peridd

Cpri : unit production cost of machine Mi,J§1,2}

Cs holding cost of a product unit during the period

R(t): reliability function

CM: maintenance cost

Com preventive maintenance action cost

C.m corrective maintenance action cost

mu monetary unit

Ui™® maximal production rate of machine Mi}{iL,2}

o probabilistic index (related to customer satistatand expressing the service level)

PRODUCTION STRATEGY

This study concerns a single stochastic invent@iarire system. The object is to optimize
the expected production and inventory costs ovinige horizonH. It is assumed that the
horizonH is partitioned equally intbl periods of lengtixt. The demand is satisfied at the end
of each period. In our analytical model we assuna¢: inventory and production costgri,

Cs the demand standard deviatigand the demand averageare known and constant.

To establish the production plan, the first stepstst to determinéJy which represent the
guantity to produce by both machine M1 and M2 fackeperiodk. in the second step, we
allow to each machine the quantity to produce.

PRODUCTION PLAN

We recall that, our objective in this part is tatateine the production plan over a time
horizon H, minimizing the expected production and inventaosts. Thus, this kind of
problem can be formulated as a linear-stochasttanap control problem under threshold
stock level constraint, with production rate as ial@le decision. We suppose that
{f.. k=1,2,..H} represent inventory and production costs, Bfjddenotes the mathematical

expectation operator. Referring to Hajej's et dl)(lve formulate our problem as following :

H-1
o &S (. u)+ 1)} @
(k) k=0
U, represent the production of both machines M1 andwith :u, =u,, +U,,.

We note that the expected cost at the peHodioes not depend on the production tdie
because the demand is satisfied at the end of gawbd. Then, in this period, we consider
only inventory cost.

The inventory balance equations for each time pagdormulated in this way:

Su=S+ U+ Y, - d (2)
To prevent shortage, the service level requirencenistraint for each period as well as a
lower bound on inventory variables is as follow:
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ProdS.,= 4=a withkO{1,2,..H-}1 (3)
The constraint defining an upper bound on the prodn level during each periddis:
0sU, <U;  +UZ withkO{1,2,..H-} (4)

In our model, we use quadratic costs to penalizéh lexcess and shortage of inventory
(HMMS model). The quadratic total expected cogproiduction and inventory over the finite
horizonH can then be expressed as follow:

F(u):gfk(uiyk, S)=GH 8+ [e% 8+ QB & pk]with ®{1,2,..., H}(5)

To facilitate the resolution of our complex problane to the stochastic demand and
inventory, we transform our problem into an equewaldeterministic one which will be then

easier to solve.
H_

Fu)=C &+Y[ G4+ G Y+ G, U]+ qoy?H 0D

=

k=0 2
Proof:
Ford, =d,, the inventory balance equation becomes:
Sau=8+U-d

Seeing thaby is constant for each intervat, we haveljk =U, and Var, =0

The inventory variableS is statistically described by its mean{s}=§ and its variance
var, Var, =E{(S.- §)7

The balance equation (2) can be reformulated sway:

E{S.}=H S} + Y.+ U,- ¢ this allow writing:
S =8+ Ut Uy d ®)

If we make the difference between equation (2) &dwe obtain:

S<+1 §+1 $ §_( p_ g

= (Sa™ §)* =($-9-( ¢ 9

=E{(S.- 507 = (5~ "9-( ¢ 97

SE{(S.- 807 = B(s- 9%+ f ¢ #-2 & s 08 4 P
SinceS anddi are independent random variables we can dedute tha
E{(s-9d-= &5 8 & &
Exploiting the linearity of the expectation we cante:

e{(s-%}= € 9- £ $=0andE{(d-d)}= Ed}- § 4} =

Therefore

E{(S-$27) = §($- 9%+ f &} Consequently

(05.,) =(0g) +(04)*

If we assume that; =0and s, is constant and equal g for all k's, we can deduce that:
(05)° =k(g)*
sincevar, =E{(S- 9 = § §}-
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And Var, =(o4)* =k(o )
We can write E{ SKQ} - $= Ko,)?

E{s7} = Ko,)?*+S! (7)
= E{§7} = Ko,)?+ &

Substituting (7) in the expected cost (5) we obtain

F)=C 5+ 2] Q%+ Gt G U]+ Gr)k
F)=C 8§+ X[ G¥* G U+ G U]+ gry T ®)

THE SERVICE LEVEL CONSTRAINT

In this part, we introduce the service level camstr To continue transforming the problem
into a deterministic equivalent, we consider a igerlevel constraint in a deterministic form
specifying certain minimum cumulative productioraqgtities depending on the service level
requirements.

Lemma
We recall thatg defines the service level constraint. This constngiexpressed as follow:

ProdS.,= =a withosU, <U; +U?%_ then, fork=1,2 ,..,H-1 we determine:
U,2U,(S,a) ;U =U, +U,, 9)

Where:

U, () : Minimum cumulative production quantity and

U, (S.a)=Vy og(@)+d-S, k=0,1,...H- 1, With:
Vi, : Variance of demand d at period k.
¢4, - Cumulative Gaussian distribution function widh mean and finite variansg 0.

(pJf: Inverse distribution function.

Proof of lemma:

ProfS.,= §=a with0<U, U} +UZ,,

= ProS +U, - d.2 {=a
= ProffS +U, 2 d]2a

:Prob[SﬁUk—axz q—d]za
:Prot{S‘Jr\tJ"_ OLZ d- d*]2a (10)
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This equation is oProdY > X] > o the form of, with X :M is a Gaussian random
dy

variable representative of the demakdand ¢, is a cumulative Gaussian distribution
function of the formF(Y) =« such us:

U G
k de
Sincelim ¢, =0andim ¢, =1, the function ¢, is strictly increasing, and we note that is
dk - —00 dk — 400
indefinitely differentiable. That's why we conclutieat is ¢, is invertible, thus:
+U, -
S( q( > (p 1(0()

=S+ U~ d 2o @)V,
=U, 29 @V, -S+ (12)
We can conclude that, (S,,a) =V, (p;kl(a)+c]k— S, with k=0,1,...,H-

Using the last lemma and equation(8), we resumedhersalent deterministic model as
follows:

I
WL

Min=C& + [ G§+ Go Uit Go U]+ oy

0

=~
1

Subjected to:

Su=S+ U+ U-d

Uy +Ug 20 "a)Vy - S+ d with k=0,1,....H- 1and & U+ y, s U=+ U=

The productlon plan gives us the quantijto produce by both machines M1 and M2 for
each period. If this value is less than the maximum productiate of the machine M1, M1

produces all the quantity. If not, the machine Maduce with its maximum production rate,
and the machine M2 produce the rest. See Figure 2.

Production plan

U =Ug andU =0

1k

Fig. 2: production plan dispatching
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INFLUENCE OF THE MACHINE DEGRADATION ON THE PRODUCTION PLAN

DEGRADATION COST ESTIMATION

In this section, we want to prove the effect of th@chine degradation on the production plan
previously established. We recall that in our madgelassume that the failure rage) is
increasing in both time and production rhlg). Since the machine production rate is variable
during the horizom, the degradation will be variable too. To estintaginfluence of the
degradation on the production plan, we adopt eanndegradation co€t,. The total cost
degradation is obtained by multiplying the unitdegradation co<t, by the failure rate

during the horizom. Considering that the failure rate is continue enchulative, the final
failure rate in the end of the horizéhis the sum of the failure rate of each period.

ANALYTICAL STUDY

Each periok of the horizorH is characterized by its own production refeestablished from
the production plan. The failure rate evolves inheiaterval according to the production rate
adopted in this interval. It also depends on thlerfarate cumulated at the end of the
previous period. As per Hajej's et al (11) apprqdbk degradation in the end of the period is
then accounted for. In fact, the failure rate i@ ittervalk is expressed as following:

2 (1) :Ak-l(At)+UUk 7 (13)

max

With A _, = 4,andA A, (t) = UUk

il’l (t)

A,(t) is the nominal failure rate corresponding to treximal production rate.

We recall that Hajej's et al (11) assumed that nmecklegradation is linear according to the
production rate.
We can write the failure rate function like this:

Q=S (a0

max

max

U,
U

J(t) with tO[0,At] (14)

max

We note that/,, At)is the degradation at the end of the productioropest).
The degradation penalizing cost is equal to:

H
CY % (15)
k=0

From equation (8) and (15) we obtain the total aodtiding the production, the inventory
and the degradation cost:

CTU=C§+Y[ G4+ G U+ G U+ @ )P DcS iz o)

OPTIMISATION
Taking the degradation cost into account, we thgimose the production plan established

previously by minimizing the total cost, which inde: production, inventory, shortage and
degradation.
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The key of this optimization strategy is in the miization of the total cost including
production, inventory and the degradation costiragsferring a production from a machine
M1 to the subcontractor machine M2 as shown irfahewing figure:

CTmin =o; 1

v

No

Uy, +i <UD

Ye

CTe = f(Upy +iUgy—i) CT = f(UzpUsk)
|

No K<H

Ye

CT= ZH: CT
k=1

cT<CT. > 'e CT, =CTi=zi+l |

vNo
CTinfori=i-1

Fig. 3: production plan optimization with degradaticost.

NUMERICAL EXAMPLE

In order to illustrate the model developed previgpuae consider a company represented by
machine M1 which has to satisfy a stochastic denaasdmed Gaussian over a finite horizon
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H; with a meanﬂk, varianc&/, and number of period equal tol120, which is extracted from

a historical sales report. To satisfy the demartti wigiven service level, the company calls
up to a subcontractor represented by a machineTM@.machine M1 has a degradation law
characterized by a Weibull distribution. The Wellsdale and shape parameters @x&00
and )=2. The only information known about M2 reliability the service leveB2 which
represent its availability. The following data areed for the other paramete@prl=7muy,
Cpr2=25mu, U,;"¥=11, U,"¥<8, R2=0.93, service leved=0.9, Cs=0.65my, initial inventory
S=15, degradation cogEA=35mu The expected demand] =15and the variance/; =1.21.

The mean demand is presented in the table 1.

15/17{ 15 15 15 14 16 14 16 15 15 {15 ]15|15(15|13] 15 15 16 183 15 15 14 16
16/16| 14 13 1% 14 15 16 14 16 14 14 |17]16|14]14/ 15 15 1% 14 1p 14 14 15
14| 14{ 15 13 15 15 1F 14 16 16 15 (14 |14|13|18|15/ 14 13 13 16 1b 15 14 14
15/15/ 14 14 13 12 16 16 15 15 15 (16 |14|17|16]/16] 15 16 13 14 1p 14 14 16
16/ 13| 17 14 17 14 16 14 16 16 14 015 |14 |14(15/15/ 16 14 16 14 1p 15 14 14

Table 1: Mean demand

The production plan corresponding to the previoaimahd for respectively M1 and M2 is as
following (table 2)

19/121 14 14 1% 12 18 12 18 13 15 (14 |14 |14|15/10] 17 15 17 9 1 15 12 18
1716/ 12 15 14 12 15 18 11 18 12 13 |20|17|11]13] 15 15 14 1?2 1p 12 13 15
13/13/ 15 10 17 15 19 11 18 16 14 12 |13|11|24|17]12 12 13 20 14 15 12 13
15/15/ 12 13 11 11 20 19 14 14 14 17 |12|20(16|17] 13 17 10 15 1B 12 13 18
17/ 9122 14 20 11 18 12 18 17 11 015 |12 |14|15|14{ 17 12 18 12 1b 14 12 13

Table 2: Production plan

To optimize the production plan obtained considgtime degradation cost, we calculate first
the degradation cost relative to the productiom @glad we add it to the total cost. Then, we
decrease the amount that the machine M1 has ta@eday a unit, and we increase that of the
machine M2, and we calculate again the total d&t.repeat this procedure until finding the
optimal cost as showing at the figure 3. The resoftthe optimization are presented in the
table number 3.

Case (+i,-) Degradation copt Total cost Servicelés
0 120847,98 304998,87 100
(-1,+1) 101609,65 286489,42 100
(-2,+2) 86150,62 272279,36 100
(-3,+3) 73751,38 266552,14 98,33
(-4,+4) 64722,94 265454,38 77,5

Table 3: The production plan optimization resulthrdegradation cost.
The table first column represents the quantity desesferred from the machine M1 to the

machine M2. We note that, the minimum total costeiached at the (-4, +4) case with a
service level equal to 77.8%. This means thatgifdecrease the machine M2 production plan
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of 4 unity and we increase that machine M1 of 4,ob&in the minimal total cost. But, the
corresponding service level is less than the omogad ¢=0.90). That's why, the minimum
adopted in this situation is the one of the ca8e«3) for which the total cost is 266552,14
um and the service level is equal to 98.33%. We il the total cost without transfer is
304998,87um These results show the important effect of thgraldation evolution over the
horizonH.

CONLUSION

In this paper, we dealt with an industrial problefran enterprise facing a random demand on
a finite horizon and given a certain service leféle manufacturing system cannot satisfy all
the demand throughout the horizon. For the sans®oneia calls upon subcontracting. The key
of this study is to consider that the failure ratereases with time and according to the
production rate. Firstly, we formulated and sohsedinear-quadratic stochastic production
problem to obtain a production plan. Using the HMMtdel, the plan minimizes the
production and the inventory cost with a variabtedoiction rate. The plan also defines the
production rate for manufacturing systems, contraahd subcontractor, during each period
over the production horizon. In a next stage, vioduced a preventive maintenance strategy.
Starting from the previously defined production mlathe study aims at optimizing
simultaneously the same production plan and itshyh@wroduced maintenance policy. The
objectives are finding out the partition numbertloé production horizomd after which a
preventive maintenance is required and, definirgttansferable quantity from the contractor
machine to its subcontractor counterpart. Throinghstudy we proposed an analytical model
to meet a random demand over a finite horizon pe@ting subcontracting constraint. The
study proposes an optimal production plan by mining simultaneously the production, the
inventory and the maintenance costs. The model shbat by subcontracting part of the
burden to produce, in addition to occurring lesgrddation in the manufacturing system,
there are occasions where subcontracting is effdgtimore economically profitable then
working with the maximum production rate. As a pedive to this study, we propose to
progress with an imperfect and non negligible darabf preventive maintenance policy,
then, assess its impact on the optimal maintenpragiiction plan.
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